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Abstract
We present a treatment of an interacting two-dimensional electron system
moving in a bidirectionally periodic potential and a perpendicular magnetic
field. Employing symmetry considerations based on the ray-group of
magnetotranslation operators and a canonical coordinate transformation, we
derive an efficient scheme for calculating energy levels and states in arbitrary
‘rational’ magnetic fields. Applying this scheme to a superlattice of strongly
localized antidots we reveal the possibility to split off an isolated and sufficiently
broad cluster of subbands from a Landau band. The implications of the
existence of such subbands to the experimental detection of the subband
structure and in particular quantum Hall effect measurements in periodic
superlattices are discussed.

1. Introduction

Inspired by advances in submicron technology, there has recently been a considerable
amount of both theoretical and experimental work aimed at understanding the physics which
governs the behaviour of realistic quasi-two-dimensional electron systems (2DES) subjected
to perpendicular magnetic fields and man-made lateral periodic confinements. Such systems
have been prepared and investigated covering a wide range of periodic modulation strength. In
weakly perturbed 2DES, a main pursuit was the commensurability-related magnetoresistance
oscillations [1] explained by the broadening of Landau levels into bands. When the superlattice
potential is applied in both lateral directions [2–4], an additional aspect, namely the splitting
of a Landau band into a complicated system of subbands [5, 6] arises. Posing a real
challenge for experimentalists, only recently some indications of such splitting were observed
in magnetoresistance oscillations of small-period lateral superlattices [7].

The splitting of a Landau band into a number of subbands also leads to the redistribution
of the quantum Hall (QH) current among them. While the total current in a band is conserved,
and the QH conductance associated with each subband is still an integer (in units e2h−1), this
integer need not equal unity [8,9]. The detection of nontrivial, that is different from 0 or 1, QH
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conductances is of great experimental interest, however, the complexity of such a measurement
(at least, in smooth periodic potentials) is even greater than that of the detection of subbands
themselves. The reason for this lies in the fact that the subbands tend to arrange themselves
into a hierarchical structure [5, 6] by forming clusters separated by large gaps, while inside
each cluster smaller sub-clusters separated by smaller subgaps are formed. Having resolved
the cluster structure at the coarsest level one would find that one cluster is carrying the total
band’s current while the others do not contribute at all. Thus, trying to access higher integers in
the QH current distribution offers an immensely difficult task of resolving at least the second
order sub-splittings. A recent experiment [10] considered the situation where the partial
contributions of three subbands to the total QH current follow the pattern 1, −1, 1, so that
the net conductance would show oscillations between 0 and 1. Due to the smallness of the
minigaps the QH conductances did not fully attain the expected values, however, the indicative
nonmonotonicity was clearly visible. In the present paper, we show that if the periodic potential
is not smooth but rather composed of steep antidots, the distribution of band-widths among
the subbands can be made very different thus increasing the feasibility of experimental access
to the subbands carrying nontrivial QH currents. Moreover, we find that sufficiently steep
potential profiles are not smoothed away by the screening charge of electrons.

Attempts to address the complicated topic of electron motion in a periodic potential and
a competing magnetic field theoretically date back to the 1950’s. The simplest descriptive
model, known as Harper’s equation [11], was derived in two limiting cases: (i) that of a
weak perturbative periodic potential imposed upon otherwise flat Landau levels [12, 13], and
(ii) that of a single tight-binding band subjected to a weak magnetic field [11, 12]. The
efforts culminated in Hofstadter’s calculation [6] of splitting and clustering of subbands into
a complicated pattern depending on the ratio of the magnetic flux through a unit cell to the
magnetic flux quantum. This treatment was based on the so-called Peierls substitution [14] and
had a fairly limited range of validity [15], however it gave a qualitatively correct visualization
of the phenomenon.

Later on, the technological advances renewed the theoretical interest in the field calling
for a more realistic treatment. Harper’s equation was generalized [16] to include interband
coupling and thus properly accounted for predominant chaotic trajectories [17] in the near-
classical regime. The electron–electron interaction was still not addressed. Its study was
initiated [18] by introducing a self-consistency procedure using the Ferrari basis [19] into the
band structure calculations. In this method one explicitly constructs translationally invariant
states thus taking the crystal symmetry into account. In practice, however, the method turned
out to be computationally demanding and provided answers only for a set of special (integer)
magnetic fields and unusually low electron densities [18]. Thus, a new effort to address a
dense set of (rational) magnetic fields and Coulomb repulsion between electrons was clearly
needed.

In the present paper, we put forward a computational scheme capable of dealing with
both integer and rational magnetic fluxes at the same level of complexity. We base this on the
treatment of crystal symmetry in magnetic fields [20], and its application by Schellnhuber and
co-workers [21,22] to calculations of diamagnetic band structure in three-dimensional solids.
In a previous publication [23] we treated the energy spectra of 2DES in the case of integer
fluxes and smooth potentials.

After the original investigation by Thouless et al [8], the problem of the distribution of
QH currents among subbands in a single band approximation was recently discussed by Chang
and Niu [24] from the point of view of semiclassical electron dynamics. The changes induced
by coupling between several Landau bands were addressed in [25]. In the present paper we
extend the previous investigations by (i) showing that superlattices composed of steep antidots
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provide a systematic way of increasing the widths of interesting (from the point of view of
QH measurement) subgaps and (ii) including and discussing the role of the electron–electron
interactions.

The paper has the following structure. In section 2 the model is formulated and in section 3
the symmetry-based analytical scheme is derived. In section 4 we discuss some limiting cases
and carry out a calculation of the band structure of antidot superlattices paying particular
attention to the appearance of an isolated cluster of subbands that splits off from a Landau
band. Such subbands (we refer to them as ‘levitating’), being considerably broad and isolated
from the other ones by large gaps, increase our hopes that they (or even their internal structure)
can be more easily resolved in an experiment and reveal some nontrivial QH numbers. We
conclude with a summary in section 5, while some matters are dealt with in the appendices.

2. Model

We consider a 2D antidot superlattice and its reciprocal counterpart spanned by the respective
vectors R = n1a1 + n2a2 and G = g1b1 + g2b2 with n1(2), g1(2) ∈ Z and ai · bj = 2πδij .
While no special restrictions on the point symmetry are imposed, it is convenient to choose
a2 ‖ y so that b1 ‖ x. In a non-orthogonal lattice, a1 will also have a component along y, so we
introduce the lattice ‘skewness’ parameter s = a1y/a2y for this case. The independent-particle
Hamiltonian of an electron moving in the crystal potential of such a lattice and a perpendicular
magnetic field reads

H = 1

2m

(
p +

e

c
A
)2

+
∑
G

v(G)eiG·r. (1)

Here, the periodic potential is given in terms of its Fourier components v(G) and the magnetic
field is expressed via its symmetric-gauge vector potential A(r) = 1

2 [B ×r]. Our method can
treat all so-called rational fields, i.e. such that the magnetic flux per unit cell equals a rational
number of magnetic flux quanta �0 = ch/e:

�/�0 = L/N L,N ∈ Z. (2)

Concentrating on the physics that is not crucially influenced by the electron spin, we neglect
the exchange interaction and Zeeman splitting but do take the degeneracy due to spin into
account.

The electrons are described in the effective-mass approximation using m = 0.067m0

moving in a medium of dielectric constant κ = 12.4. We concentrate on short-period
superlattices. In the calculation we set the lattice constant to a = 1000 Å; then a moderate
magnetic field B = 1.65 T produces a commensurate flux equal to 4 flux quanta per unit
cell. The Coulomb repulsion is included at the mean-field level. Thus, the periodic potential
entering (1) is a sum of the ‘external’ antidot potential and the Hartree term

v(G) = vext(G) +
2π

|G|
e2

κ
ns(G)(1 − δG,0) (3)

where ns(G) is the Fourier transformed electron density constructed from the eigenfunctions of
the Hamiltonian in equation (1), and the Kronecker delta indicates that the G = 0 contribution
is cancelled by the positive background charge. Thus, the energy spectrum of Hamiltonian (1)
has to be calculated self-consistently by convergent iterations together with equation (3).

In order to make use of the symmetry with respect to discrete translations in a uniform
magnetic field we introduce the group of magnetotranslation operators. Their generator is
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defined so as to commute with the kinetic momentum pkin = p + e
c
A, and in the symmetric

gauge reads pgen = p − e
c
A. Therefore, we have

TM(R)ψ(r) = exp

[
− i

h̄
R ·

(
p − e

c
A
) ]
ψ(r) = exp

(
ie

2h̄c
r · [R × B]

)
ψ(r − R). (4)

The operators TM appearing in equation (4) commute with the Hamiltonian (1) thus allowing
for a classification of its eigenstates by their translational symmetry properties. Note, however,
that a product of two magnetotranslations equals another member of the group only up to a
phase

TM(R1)TM(R2) = TM(R1 + R2)e
−(ie/2h̄c)B·[R1×R2] (5)

indicating that one deals here with a ray group [26] rather than a conventional vector
group. Nevertheless, the conventional framework of group-theoretical treatment remains
applicable [20].

3. Theory

Having spelled out all the definitions in full in the preceding section 2, we now switch to natural
dimensionless units. We use the cyclotron frequency and the magnetic length

ωc = eB

mc
lc =

√
h̄c

eB
(6)

as the defining quantities, and from now on measure all lengths in lc, momenta in h̄l−1
c , and

energies in h̄ωc. The rationality condition (2) is cast into a relation for the unit-cell area

 = a1xa2y = 2πL/N (7)

to be extensively used in algebraic manipulations hereafter.
Further, we perform a canonical coordinate transformation [22] to a new set of variables

ξ and η

ξ = py + x/2 pξ = px − y/2
η = − py + x/2 pη = px + y/2 (8)

which maps the kinetic-energy part of the Hamiltonian (denoted H0) onto that of a harmonic
oscillator in ξ

H0 = 1

2

(
p2
ξ + ξ 2

)
. (9)

Moreover, the translations (4) are now found to act only on the η coordinate

TM(R) = exp(−iRxpη + iRyη). (10)

Thus, the complexity has been isolated into the periodic potential term which has become
a function of both the new coordinates and momenta. Its Fourier components behave like
magnetic translation operators

H1 =
∑
G

v(G)X̂(G|ξ)Ŷ (G|η)

X̂(G|ξ) = exp(iGxξ − iGypξ ) (11)

Ŷ (G|η) = exp(iGxη + iGypη)

and will mix the ξ and η degrees of freedom.
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The transformation of states between (x, y) and (ξ, η) representations is given by

〈xy|ψ〉 =
∫ ∞

−∞
dξ
∫ ∞

−∞
dη 〈xy|ξη〉〈ξη|ψ〉 (12)

with the kernel 〈xy|ξη〉 obtained by solving the eigenvalue equations for ξ and η(
x

2
− i

∂

∂y
− ξ

)
〈xy|ξη〉 = 0(

x

2
+ i
∂

∂y
− η

)
〈xy|ξη〉 = 0 (13)

with the result

〈xy|ξη〉 = 1√
2π

eiy(ξ−η)/2δ(x − ξ − η). (14)

3.1. Symmetry adapted basis

In order to take full advantage of the symmetry properties of the system, the next step towards
a solution is the decomposition of the functional space F(ξ, η) of all functions of ξ and η
into invariant subspaces of the symmetry group. Since the different subspaces are not coupled
by the Hamiltonian, the effort needed to diagonalize it is reduced. Moreover, thanks to the
canonical transformation the magnetotranslations now act only on the η degree of freedom,
so the task narrows to a construction of a symmetry-adapted basis that spans F(η). As we
will see, the dimensionality of the invariant subspaces equals L, therefore the ansatz for the
states will involve a linear combination of L η-dependent functions multiplied by a suitable
expansion of the ξ -dependent part.

The construction of the symmetry-adapted basis for the η degree of freedom proceeds by
employing the projection-operators technique. We use the irreducible representations of the
magnetotranslation group given in [20]. They are labelled by the magnetic crystal momentum
vector q = q1b1 + q2b2 and relate to the ‘central’ (q = 0) one as

Dq(R) = e−iq·RD0(R) = e−2π i(n1q1+n2q2)D0(R). (15)

The N × N matrix D0 for any translation vector R is generated from those corresponding to
the primitive lattice vectors [20]1

D0
jk(a1) = δjke

2π i(j−1)L/ND0
jk(a2) = δ mod N

j,k−1 (16)

and the ray-group multiplication law (5) yielding

D0
jk(R) = δ mod N

j,k−n2
exp

{
iπ
L

N
n1[n2 + 2(j − 1)]

}
. (17)

Note that increasing any of q1 or q2 by 1/N produces an equivalent representation. Thus the
values of q have to be restricted to a single magnetic Brillouin zone (MBZ) which we choose
as 0 � q1, q2 < 1/N . The rank of the matrices implies the existence of N partner functions
(indexed by t = 1, . . . , N) transforming according to different rows of the same irreducible
representation Dq . However, in the subsequent analysis we concentrate only on one (t = 1)
of the partners for the others can be easily obtained from it by means of a translation parallel
to a2. This and other transformation properties of the states are discussed in appendix A.

1 From here on we use the notation δ mod p
ij to denote a ‘modulo Kronecker delta’ which equals 1 if i and j are equal

or differ by a multiple of p, and vanishes otherwise.
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In order to construct the principal partner function we introduce the projection operator
projecting onto the first row of the qth representation

P
q
11 =

∑
R

[Dq
11(R)]

∗TM(R). (18)

After a number of straightforward algebraic steps (see appendix B for some details and
comments) we arrive at the following expressions for the normalized basis functions labelled
by a new subband index (l = 0, 1, . . . , L − 1) introduced to account for the presence of L
linearly independent basis functions of the same symmetry

ϕl(q|η) =
√

2π

a2y

∞∑
m=−∞

exp

[
2π im(q1 − sq2) + iπs

m2L + 2ml

N

]

×δ
(
η +Nq2

a1x

L
− a1x

l + Lm

L

)
. (19)

These functions together with the other partner functions constitute a complete orthonormal
set in F(η). By construction, the Hamiltonian is diagonal with respect to the quantum numbers
q1, q2 and t but can mix different subbands l.

3.2. Eigenvalue problem

Turning to the ξ -dependent part of the wave-function, we see that it can be expanded in any
suitable basis independent of the symmetry. Working in the strong magnetic field limit, the
harmonic oscillator eigenfunctions χn(ξ) are an appropriate choice. In this case the kinetic
energy H0 is immediately diagonal and the task is to diagonalize H1. In simple terms, this
means that one deals with perturbed Landau levels.

Specializing this approach, we formulate the following ansatz for the states

ψ(q|ξ, η) =
∞∑
n=0

χn(ξ)

L−1∑
l=0

anlϕl(q|η) (20)

which allows for mixing of different Landau levels and subbands. Upon insertion into the
Hamiltonian, one sees that the effect of the operator Ŷ (G|η) can be expressed as

Ŷ (G|η)ϕl′(q|η) =
L−1∑
l=0

All′(q; G)ϕl(q|η) (21)

where All′ is a phase factor whose calculation is straightforward and yields

All′(q; G) = exp

(
iπg1g2

N

L

)
exp

(
2π ig1

l

L

)
exp

[
2π i

N

L
(q1g2 − q2g1)

]

× exp

[
2π i (q1 − sq2)

l − l′
L

]
exp

(
iπs
l2 − l′2
NL

)
δ mod L
l′,l+Ng2

. (22)

Similarly, the effect of X̂(G|ξ) on a harmonic oscillator function can be written

X̂(G|ξ)χn′(ξ) =
∞∑
n=0

Bnn′(G)χn(ξ) (23)

thus mixing Landau levels. Using the defining equation (11) we express the ξ -dependent
matrix element (23) as
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Bnn′(G) = e−iGxGy/2
∫ ∞

−∞
χn(ξ)χn′(ξ −Gy)eiGxξdξ

=
√

2n′
n′!

2nn!
e−(G2

x+G2
y )/4(Gy + iGx)

n−n′
Ln−n

′
n

(
G2
x +G2

y

2

)
= B∗

n′n(−G) (24)

for n � n′.
The result of the above manipulations is the following eigenvalue problem

∞∑
n′=0

L−1∑
l′=0

Mnl;n′l′an′l′ = εanl

Mnl;n′l′ = δnn′δll′

(
n +

1

2

)
+
∑
G

v(G)All′(q; G)Bnn′(G) (25)

whose solutions specify the single particle states and energies. Transforming the symmetry-
adapted basis functions ψnl(q|ξη) = χn(ξ)ϕl(q|η) into the x and y coordinates according to
(14) and we obtain

ψnl(q|xy) = 1√
a2y

eixy/2
∞∑

m=−∞
e2π im(q1−sq2)eiπs(m2+2ml)/Ne−iκlmyχn(x − κlm)

κlm = a1x

(
−Nq2

L
+
l +mL

L

)
. (26)

The chosen normalization∫ ∞

−∞
dx
∫ ∞

−∞
dy ψ∗

n′l′(q
′|xy)ψnl(q|xy) = δ(q1 − q ′

1)δ(q2 − q ′
2)δnn′δll′ (27)

implies that the states are normalized to N over N adjacent cells along a2.
We express the eigenstates in real space as

ψ(ν)(q|xy) =
∞∑
n=0

L−1∑
l=0

a
(ν)
nl ψln(q|xy) (28)

where ν numbers the different solutions of equation (25). The Fourier components of electron
charge density are obtained by Fourier transforming

ns(r) = 2
∑
q,ν,t

|ψ(ν)(q, t |r)|2f [εν(q)− µ] (29)

where 2 is for spin, f (ε − µ) denotes the Fermi distribution function and µ is the chemical
potential determined by equating the integral of (29) over a unit cell to the average number of
electrons per cell. In order to improve the numerical stability, we perform the calculations at
several small but finite values of the temperature and then extrapolate to T = 0 [27].

It has been shown that the quantized value of QH current carried by a given subband is
determined by the total vorticity of the wave-function in MBZ [8,28]. Therefore, the knowledge
of energy levels and eigenstates will also specify the QH conductances obtained whenever the
chemical potential lies in a gap thus separating the completely filled subbands from the empty
ones. A practical way of computing the QH integers σH in a gap is given by the thermodynamic
Středa formula [9]

e2

h
σH = ec

[
∂N(E)

∂B

]
σH ∈ Z (30)



3372 E Anisimovas et al

which expresses the conductance in terms of the dependence of the number of electronic states
below the gap on the magnetic field strength. Being able to handle a dense set of rational fields,
we obtain σH directly from the band-structure calculations at two sufficiently close values of
magnetic flux that share the gap.

4. Results

Let us now turn to the results obtained applying the above formalism to antidot superlattices.
We begin our presentation by contrasting the essential features of the energy spectra of non-
interacting electrons for two distinct choices of the periodic potential: (i) smooth potentials
described by a few lowest Fourier components and (ii) potentials created by very narrow and
steep antidots whose Fourier spectrum includes many high-G components. In the extreme
limits of the two cases we deal with a cosine-like modulation and a lattice of δ-functions,
respectively, and obtain some analytical results. In the second case, we record the property of
the energy spectrum to contain split-off levitating subbands and proceed to consider realistic
antidots of finite radius and include the effects of electron–electron interaction.

4.1. Weak cosine modulation

We now concentrate on the lattices of perfect square symmetry and describe the potential
modulation by setting the four lowest Fourier components to equal strength v(0,±1) =
v(±1, 0) ≡ v. When the potential is also weak, the different Landau levels are not coupled
(Bnn′ ∝ δnn′ ) and all four non-vanishing coefficients Bnn(G) are equal and evaluate to

bn ≡ Bnn(0,±1) = Bnn(±1, 0) = e−πN/(2L)Ln

(
πN

L

)
. (31)

Consequently, bn can be moved outside the sum over G in the potential-energy term of
equation (25) as a prefactor, and thus it will influence only the overall band widths. The
internal subband structure within each band will be given by the rest of the summation which
we carry out explicitly. For the sake of convenience, we redefine the phases of the wave
functions according to ϕl(q) → ϕl(q) exp(2πiq1l/L). Then the potential energy term reduces
to vbnδnn′9ll′ , the matrix 9 containing the following non-zero matrix elements

9ll = 2 cos

[
2π

L
(l −Nq2)

]

9lm = 9∗
ml = exp

(
2π i

N

L
q1

)
δ mod L
l+N,m . (32)

Renumbering the rows and columns of this matrix according to l = Nλ mod L it can be cast
into the form2

9λλ = 2 cos

[
2π
N

L
(λ− q2)

]

9λµ = 9∗
µλ = exp

(
2π i

N

L
q1

)
δ mod L
λ+1,µ (33)

allowing for the following interpretation. As depicted in figure 1, one deals with a 1D chain of
lattice sites whose energies are modulated by a cosine function of period L/N . Neighbouring
sites are coupled by hopping matrix elements of unit absolute magnitude and incorporating a
phase ; = 2πNq1/L.

2 Since N and L are mutual primes, such a renumbering is always possible. Note also that in this subsection we
number the matrix indices from 0 to L− 1.
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∆+ie ∆e-i

λ= 0 1 2 L-1 (L)
ε

Figure 1. A 1D chain of L lattice sites with periodic boundary conditions. The site energies are
modulated according to the law ελ = 2 cos[2πN(λ − q2)/L] so that one has an integer number
(N ) of full periods per L sites. The hopping matrix elements include a phase ; = 2πNq1/L.

The matrix 9 embodies the simplest model describing commensurability-related
phenomena equivalently to the Harper’s equation. In the present case we encounter the
commensurability between the unit lattice site spacing andL/N site energy modulation period
which leads to the splitting of each Landau band into L subbands. This observation completes
the demonstration of how our model reduces to previously known simple models [6]. For
the sake of reference, we also need to quote some results. Thus, in figure 2 we show the
relative widths of the subbands together with the QH currents carried by each of them for
a few flux values close to L/N = 3. The important point to note is that the physical
requirement for the bands to evolve continuously as a function of magnetic field leads to
the clustering of the subbands into closely packed groups denoted by ‘A’, ‘B’ and ‘C’ whose
net QH conductances equal 0, 1 and 0, respectively. When the commensurate flux deviates
from the value L/N = 3/1, the three clusters develop a fine structure of subbands carrying
QH currents different from 0 or 1. We note that these subbands and subgaps separating them
are narrow and thus difficult to resolve. However, the subband structure can be quite different
in a periodic lattice whose potential is steep and thus posesses a broad Fourier spectrum.

4.2. δ-function antidot lattice

We start by considering integer fluxes L (i.e. N = 1), while the discussion of the general
case of rational fluxes follows later. The periodic lattice is composed of antidots modelled by
δ-functions, thus

v(r) = v0 
∑
R

δ(r − R) v(G) ≡ v0 (34)

in the real and reciprocal space, respectively. Here v0 is the strength of an antidot and  is
the unit-cell area. Calculating the matrix elements of potential (34) in the symmetry-adapted
basis (26) we find∫ ∞

−∞
dx
∫ ∞

−∞
dy ψ∗

nl(q|r)v(r)ψn′l′(q
′|r) = v0 δ(q1 − q ′

1)δ(q2 − q ′
2)ψ

∗
nl(q|0)ψn′l′(q|0). (35)

Thus we see that at each point in MBZ the matrix of the potential energy factorizes into an
outer product of a vector with itself. Such a matrix has only one non-zero eigenvalue.

In the limit of weak potentials v0 the coupling between different Landau levels can
be neglected. Then we find the energies of the states with respect to the common energy
n + 1/2 in the nth level3 by diagonalizing just the L × L potential energy matrix vll′ =
v0 ψ

∗
nl(q|0)ψnl′(q|0). In view of its special structure all but one of its eigenvalues equal zero

and the only nonvanishing one is obtained as the trace

εn(q) = v0 

L−1∑
l=0

|ψnl(q|0)|2. (36)

3 We number Landau levels starting with zero for the lowest one.
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Figure 2. The structure of the energy spectrum and distribution of quantum Hall curents among
the subbands for several magnetic flux values close to L/N = 3. The continuity of the subbands
leads to the ‘hiding’ of nontrivial QH integers in deep levels of the recursive subband structure.

Thus we conclude that in the perturbative regime the lattice of δ-antidots will split off exactly
one subband from each Landau band containing L subbands in total. This in turn implies
that the degenerate subband wave-functions rearrange themselves in such a way that L− 1 of
them have their zeros at the locations of antidots so that they are not affected by the zero-range
antidot potential. Therefore, even beyond the perturbative regime one will still observe only
one split-off subband, however, its energy will not scale linearly with the potential strength
but rather level off. We display both the linear dispersion in the perturbative regime and the
cross-over to the ‘saturation’ region of the band energies in the panel (a) of figure 3 for a
magnetic flux L = 4.

Another interesting feature shown in figure 3(a) is that the lower edge of the levitating
subband in the third (n = 3) Landau band stays pinned exactly at the value ε = 3.5 regardless
of the potential strength. This is a consequence of the fact that in the present case at the centre
of MBZ (which corresponds to the band minimum) all four subband functions have their zeros
at the exact locations of the antidots and thus are not affected by the potential at all. On the
contrary, at the corner of MBZ (q1 = q2 = 1/2, top of the band) all four unperturbed functions
place their maxima at the locations of the antidots. Therefore, the resulting energy (36) is
large, and the band is broad.

However, panel (b) displays the behaviour of the same bands when the potential strength
and the magnetic flux penetrating a unit cell are kept fixed at the respective values v0 = 0.15
and L = 4, but the shape of the lattice is varied by continuously distorting it into a rectangular
(rather than square) one. We observe that at some given ratio of the two lattice constants the
width of the third band shrinks down to zero. On the contrary, the width of the levitating
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Figure 3. The structure of the energy spectrum in a δ-antidot lattice. Panel (a) shows the evolution
of the split-off levitating subbands at a fixed integer magnetic flux � = 4�0 as a function of
potential strength. The energies are measured in units h̄ωc = 2.86 meV. The remaining 3 subbands
in each Landau band have zero widths and are positioned at the unperturbed energies n + 1/2
denoted by dashed lines. In (b) we display the band-widths as a function of the ratio of two lattice
constants (logarithmic scale) at fixed values of v0 = 0.15 and L = 4. (c) shows the dispersion
against the magnetic field of the levitating subband belonging to the n = 1 Landau level for a fixed
value of the potential v0 = 0.125 in a square lattice. We look at the vicinity of L/N = 3/1 and
correspondingly measure energies in units h̄ωc = 2.14 meV.

subband originating from the lowest Landau level increases quite substantially starting from
what was a very narrow band in a square lattice. In conclusion, the subband wave-functions
exibit a certain rigidity and thus the effect of a periodic δ-function lattice on the energy spectrum
depends on the relative distribution of the lattice sites, on one hand, and maxima and nodes of
the states, on the other.

The levitating subbands contain a magnetic field independent number of states and
therefore carry no net QH current. However, for rational fluxes (N �= 1) each of these bands
splits into N smaller subbands. Being able to resolve such splittings inside a levitating band
one would detect some interesting QH currents. In figure 3(c), we show the fine structure of a
levitating subband in the vicinity of commensurate fluxL/N = 3. The three most conspicuous
clusters separated by large gaps (denoted by dashed lines) carry QH currents equal to −1, 2,−1.

Comparing the discussed structure of the spectrum to that found in the limit of smooth
potentials we can describe it as the magnification of the energy scale of the topmost cluster of
subbands denoted by ‘A’ in figure 2 while the widths of clusters ‘B’ and ‘C’ shrink down to zero.
This redistribution of band-widths can be used as a way to systematically increase the widths
of certain subbands and gaps in the ‘butterfly’-like bandstructure when trying to detect them
experimentally, in particular, in a QH measurement. We suggest that broad levitating subbands
could be most easily detected in moderate (L/N ≈ 3−6) magnetic fields. In weaker fields, the
electronic states are poorly localized and thus they are averaging the potential landscape over a
large area of a unit cell. Therefore, even very narow antidots will fail to differentiate between
various degenerate subband states in a Landau level. On the other hand, in stronger magnetic
fields the states in a levitating subband become too strongly localized and have vanishingly
small overlaps with their neighbours in adjacent cells which results in very small band-widths.
Moreover, as we discussed above, the widths and positions of the levitating subbands may be
very sensitive to the geometry of the lattice.
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4.3. Realistic antidot superlattices

With the discussion of limiting cases in the background, we proceed to the consideration of
superlattices of finite-radius antidots and also include the electron–electron interaction. We
set the electron density to ns = 1011 cm−2. The lattice is chosen to be of perfect square
symmetry, and the antidots are modelled by gaussians of effective radius b. Thus, in the real
and reciprocal space, respectively,

v(r) =
∑
R

v0 e−(r−R)2/b2
v(G) = v0αe−απg2

(37)

here g = (g2
1 + g2

2)
1/2 and α = πb2/a2 denotes the fraction of a cell area occupied by an

antidot.
The panels (a) and (b) of figure 4 show the subband structure in the first (n = 1) Landau

band for the magnetic flux L/N = 3. We plot the allowed energy values in the three resulting
subbands as a function of the effective electron–electron interaction strength λwhich is ‘turned
on’ from 0 (free electrons) to 1 (actual value). The two panels compare the spectra obtained
for two different sizes of antidots: α = 0.1 and 0.2 in the panels (a) and (b), respectively.
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Figure 4. The energy spectra of interacting electrons in units h̄ωc = 2.14 meV. The panels (a)
and (b) show the behaviour of the subbands in the first Landau band as a function of effective
interelectron interaction strength λ for two different choices of periodic potential (see parameter
values in the figure). The panel (c) shows the subband structure versus magnetic flux for fully
interacting electrons and α = 0.1, v0 = 6.67.

We see that the bands become narrower as the interaction strength increases. The reason
for this lies in the fact that the band-widths are set by a competition between the band-narrowing
effect due to the magnetic field and the broadening of the bands by the periodic potential. The
electronic screening effectivelly reduces the strength of the periodic potential and consequently
leads to narrower bands. The importance of the screening can be judged upon from the fact
that the band-widths change ≈ 4 times.

However, in a lattice composed of narrow antidots (α � 0.1) the strong screening effects
fail to introduce qualitative changes into the structure of the energy spectrum since the Coulomb
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potential in reciprocal space behaves as ∝ |G|−1 and becomes inefficient at high G’s. Thus,
in figure 4(a) we see that even in the presence of electron–electron interaction the nature
of the spectrum retains features characteristic of a narrow-antidot lattice. At λ ≈ 0.15 we
find a closing and reopening of the gap separating the levitating subband from the other two.
However, it does not lead to redistribution of QH currents; the net current in the topmost band
always equals 0. In panel (c), we plot the energy bands versus the commensurate magnetic
flux for the interacting electrons (λ = 1). Here the value of v0 is four times larger than that
in panel (a) in order to maintain the overall width of the bands. As in figure 3, the three most
conspicuous clusters of subbands (delimited by dashed lines) within the levitating band carry
QH currents equal to −1, 2,−1 and are still separated by sufficiently broad gaps.

When the size of the antidots is increased to α = 0.2 (panel (b)) the electronic screening
becomes capable of transforming the steep bare periodic potential into a rather smooth self-
consistent potential. Thus, we see that at the effective interaction around λ ≈ 0.3 the nature of
the subband structure cross-over to that characteristic of smooth potentials, i.e. the wide gap
separating a levitating subband disappears.

The inclusion of exchange and correlation effects beyond the mean-field level would
introduce certain quantitative modifications into the details of the self-consistent potential
and the exact positions of the calculated bands, however, the essential conclusions regarding
the nature of the energy spectrum and its stability with respect to strong electron–electron
interactions follow from the inefficiency of screening of high Fourier components of the
external potential and would remain unaltered.

5. Summary

In summary, we developed a theory to describe electrons moving in competing periodic
potentials and magnetic fields which enabled us to treat interacting electrons at a dense set
of magnetic field values. Considering the electron spectra in superlattices composed of steep
antidots we identified a cluster of sufficiently broad and well isolated subbands. Such subbands
can be more easily resolved in a measurement, moreover, their internal structure may reveal a
rich spectrum of QH integers.

Appendix A. Symmetry properties of the states

The transformation properties of the states with respect to translations are derived by
commuting the magnetic-translation operators (4) and a general projection operator

P
q
jk =

∑
R

[D0
jk(R)e

−iq·R]∗TM(R) (A.1)

which projects out the component belonging to the k-th row of the representation q and then
generates the partner belonging to the j -th row. After some straightforward algebra we obtain

TM(−a1)P
q
jk = e2π i[q1−(L/N)(j−1)]P

q
jk

TM(−a2)P
q
jk = e2π iq2P

q
j+1,k. (A.2)

The first line in equation (A.2) defines the equivalent of the usual Bloch condition, while the
second one equips us with a rule for generation of all partner functions from the first one

ψj(q) = e−2π iq2(j−1)TM [−(j − 1)a2]ψ1(q). (A.3)

JoiningN adjacent cells along the a2 direction one constructs a supercell enclosing an integer
flux and recovers a Bloch-like relation

TM(Na2)ψj (q) = e−2π iNq2ψj(q). (A.4)
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Appendix B. On the projection operators

We start by inserting the expression of irreducible representation (17) and the
magnetotranslation operator (10) into the definition of the projection operator (18). In the
resulting sum over lattice sites, the summations over the indices n1 and n2 decouple. The
latter one can be carried out explicitly thus transforming a sum of exponentials into a series of
δ-functions. The answer reads

P
q
11 = a1x

L

∞∑
m=−∞

δ
[
η + (Nq2 −m)a1x

L

] ∞∑
n=−∞

e2π inq1 e−ia1xa1yn
2/2eia1ynηTη(na1x). (B.1)

Consider first the case L = 1. Acting on a given seed function the translation operator Tη
will produce its shifted replicas of period a1x which will be subsequently filtered through a
series of δ-functions of the same spacing. Thus, in order to be able to project out nonvanishing
components for any subspace it suffices to choose a seed function that is nonzero (we set it
equal to a constant) only in an interval of length a1x . Consequently, the final expression for
the states (19) contains just a single sum and not double series.

In the case L �= 1 the spacing between δ-functions in (B.1) becomes L times finer and
leads to the appearance of L distinct basis functions of the same symmetry.

Our procedure of constructing the symmetry-adapted basis bears some resemblance to
that due to Ferrari [19]. The ‘double series’ in Ferrari’s equation (45) is the equivalent of our
projection operator. However, the corresponding expression for the states given in equation
(46) of [19] still involves a double sum. Moreover, our approach based on group theory handles
the cases L �= 1, N �= 1 in a uniform way without any need for introducion of a finer paving
inside a lattice cell or explicit construction of supercells.
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Středa P 1982 J. Phys. C: Solid State Phys. 15 L1299
[10] Albrecht C, Smet J H, von Klitzing K, Weiss D, Umansky V and Schweizer H 2001 Phys. Rev. Lett. 86 147
[11] Harper P G 1955 Proc. Phys. Soc. A (London) 68 874
[12] Langbein D 1969 Phys. Rev. 180 633
[13] Rauh A 1975 Phys. Status Solidi B 69 K9
[14] Peierls R E 1933 Z. Phys. 80 763
[15] Alexandrov A S and Capellmann H 1991 Phys. Rev. Lett. 66 365



Electronic structure of antidot superlattices in commensurate magnetic fields 3379

[16] Petschel G and Geisel T 1993 Phys. Rev. Lett. 71 239
[17] Weiss D, Roukes M L, Menschig A, Grambow P, von Klitzing K and Weimann G 1991 Phys. Rev. Lett. 66 2790

Fleischmann R, Geisel T and Ketzmerick R 1992 Phys. Rev. Lett. 68 1367
[18] Gudmundsson V and Gerhardts R R 1995 Phys. Rev. B 52 16 744

Gudmundsson V 1998 Phys. Rev. B 57 3989
[19] Ferrari R 1990 Phys. Rev. B 42 4598

For an example of application of the Ferrari basis see Silberbauer H 1992 J. Phys. Condens.: Matter 4 7355
[20] Brown E 1964 Phys. Rev. 133 A1038

Zak J 1964 Phys. Rev. 134 A1602
Zak J 1964 Phys. Rev. 134 A1607

[21] Schellnhuber H-J and Obermair G 1980 Phys. Rev. Lett. 45 276
Obermair G M and Schellnhuber H-J 1981 Phys. Rev. B 23 5185
Schellnhuber H-J, Obermair G M and Rauh A 1981 Phys. Rev. B 23 5191

[22] Schellnhuber H-J 1982 Phys. Rev. B 25 2358
[23] Anisimovas E and Johansson P 1999 Phys. Rev. B 60 7744
[24] Chang M-C and Niu Q 1996 Phys. Rev. B 53 7010
[25] Springsguth D, Ketzmerick R and Geisel T 1997 Phys. Rev. B 56 2036
[26] Hamermesh M 1989 Group Theory and its Application to Physical Problems (New York: Dover) chapter 12
[27] Almbladh C-O 1999 private communication

Different variations of this technique are commonly used in band-structure calculations
[28] Dana I, Avron Y and Zak J 1985 J. Phys. C: Solid State Phys. 18 L679

Niu Q, Thouless D J and Wu Y-S 1985 Phys. Rev. B 31 3372


